要求
- 全局唯一性:不能出现重复的ID号,既然是唯一标识,这是最基本的要求。
- 在MySQL InnoDB引擎中使用的是聚集索引,由于多数RDBMS使用B-tree的数据结构来存储索引数据,在主键的选择上面我们应该尽量使用有序的主键保证写入性能。
- 单调递增:保证下一个ID一定大于上一个ID,例如事务版本号、IM增量消息、排序等特殊需求。
- 信息安全:如果ID是连续的,恶意用户的扒取工作就非常容易做了,直接按照顺序下载指定URL即可;如果是订单号就更危险了,竞对可以直接知道我们一天的单量。所以在一些应用场景下,会需要ID无规则、不规则。
常见方法介绍
UUID
UUID(Universally Unique Identifier)的标准型式包含32个16进制数字,以连字号分为五段,形式为8-4-4-4-12的36个字符。
优点:
- 性能非常高:本地生成,没有网络消耗。
- 比较适合用于生成唯一的名字的标示比如文件的名字。
缺点:
- 不易于存储:UUID太长,16字节128位,通常以36长度的字符串表示,很多场景不适用。
- 信息不安全:基于MAC地址生成UUID的算法可能会造成MAC地址泄露,这个漏洞曾被用于寻找梅丽莎病毒的制作者位置。
- ID作为主键时在特定的环境会存在一些问题,36字符长度太长,他的无序性可能会引起数据位置频繁变动,性能受到影响。
snowflake方案
这种方案大致来说是一种以划分命名空间(UUID也算,由于比较常见,所以单独分析)来生成ID的一种算法,这种方案把64-bit分别划分成多段,分开来标示机器、时间等。41-bit
的时间可以表示(1L<<41)/(1000L*3600*24*365)=69
年的时间,10-bit
机器可以分别表示1024
台机器。
优点:
- 毫秒数在高位,自增序列在低位,整个ID都是趋势递增的。
- 不依赖数据库等第三方系统,以服务的方式部署,稳定性更高,生成ID的性能也是非常高的。
- 可以根据自身业务特性分配bit位,非常灵活。
缺点:
- 强依赖机器时钟,如果机器上时钟回拨,会导致发号重复或者服务会处于不可用状态。
数据库生成
以MySQL举例,利用给字段设置auto_increment_increment
和auto_increment_offset
来保证ID自增,每次业务使用下列SQL读写MySQL得到ID号。begin;
REPLACE INTO Tickets64 (stub) VALUES ('a');
SELECT LAST_INSERT_ID();
commit;
优点:
- 非常简单,利用现有数据库系统的功能实现,成本小,有DBA专业维护。
- ID号单调自增,可以实现一些对ID有特殊要求的业务。
缺点:
- 强依赖DB,当DB异常时整个系统不可用,属于致命问题。配置主从复制可以尽可能的增加可用性,但是数据一致性在特殊情况下难以保证。主从切换时的不一致可能会导致重复发号。
- ID发号性能瓶颈限制在单台MySQL的读写性能。
对于MySQL性能问题,每台机器设置不同的初始值,且步长和机器数相等。这种架构貌似能够满足性能的需求,但有以下几个缺点:
- 系统水平扩展比较困难
- ID没有了单调递增的特性,只能趋势递增
- 数据库压力还是很大
Leaf方案实现
Leaf-segment数据库方案
在使用数据库的方案上,做了如下改变:
- 原方案每次获取ID都得读写一次数据库,造成数据库压力大。改为利用proxy server批量获取,每次获取一个segment(step决定大小)号段的值。用完之后再去数据库获取新的号段,可以大大的减轻数据库的压力。
- 各个业务不同的发号需求用biz_tag字段来区分,每个biz-tag的ID获取相互隔离,互不影响。如果以后有性能需求需要对数据库扩容,不需要上述描述的复杂的扩容操作,只需要对biz_tag分库分表就行。
|
重要字段说明:biz_tag用来区分业务,max_id表示该biz_tag目前所被分配的ID号段的最大值,step表示每次分配的号段长度。原来获取ID每次都需要写数据库,现在只需要把step设置得足够大,比如1000。那么只有当1000个号被消耗完了之后才会去重新读写一次数据库。读写数据库的频率从1减小到了1/step。
test_tag在第一台Leaf机器上是1~1000的号段,当这个号段用完时,会去加载另一个长度为step=1000的号段,假设另外两台号段都没有更新,这个时候第一台机器新加载的号段就应该是3001~4000。同时数据库对应的biz_tag这条数据的max_id会从3000被更新成4000,更新号段的SQL语句如下:Begin
UPDATE table SET max_id=max_id+step WHERE biz_tag=xxx
SELECT tag, max_id, step FROM table WHERE biz_tag=xxx
Commit
优点:
- Leaf服务可以很方便的线性扩展,性能完全能够支撑大多数业务场景。
- ID号码是趋势递增的8byte的64位数字,满足上述数据库存储的主键要求。
- 容灾性高:Leaf服务内部有号段缓存,即使DB宕机,短时间内Leaf仍能正常对外提供服务。
- 可以自定义max_id的大小,非常方便业务从原有的ID方式上迁移过来。
缺点:
- ID号码不够随机,能够泄露发号数量的信息,不太安全。
- TP999数据波动大,当号段使用完之后还是会hang在更新数据库的I/O上,tg999数据会出现偶尔的尖刺。
- DB宕机会造成整个系统不可用。
双buffer优化
对于第二个缺点,Leaf-segment做了一些优化,简单的说就是:
Leaf 取号段的时机是在号段消耗完的时候进行的,也就意味着号段临界点的ID下发时间取决于下一次从DB取回号段的时间,并且在这期间进来的请求也会因为DB号段没有取回来,导致线程阻塞。如果请求DB的网络和DB的性能稳定,这种情况对系统的影响是不大的,但是假如取DB的时候网络发生抖动,或者DB发生慢查询就会导致整个系统的响应时间变慢。
为此,我们希望DB取号段的过程能够做到无阻塞,不需要在DB取号段的时候阻塞请求线程,即当号段消费到某个点时就异步的把下一个号段加载到内存中。而不需要等到号段用尽的时候才去更新号段。这样做就可以很大程度上的降低系统的TP999指标。
采用双buffer的方式,Leaf服务内部有两个号段缓存区segment。当前号段已下发10%时,如果下一个号段未更新,则另启一个更新线程去更新下一个号段。当前号段全部下发完后,如果下个号段准备好了则切换到下个号段为当前segment接着下发,循环往复。
Leaf-snowflake方案
Leaf-segment方案可以生成趋势递增的ID,同时ID号是可计算的,不适用于订单ID生成场景,比如竞对在两天中午12点分别下单,通过订单id号相减就能大致计算出公司一天的订单量,这个是不能忍受的。面对这一问题,提供了 Leaf-snowflake方案。
Leaf-snowflake方案完全沿用snowflake方案的bit位设计,即是“1+41+10+12”的方式组装ID号。对于workerID的分配,当服务集群数量较小的情况下,完全可以手动配置。Leaf服务规模较大,动手配置成本太高。所以使用Zookeeper持久顺序节点的特性自动对snowflake节点配置wokerID。Leaf-snowflake是按照下面几个步骤启动的:
- 启动Leaf-snowflake服务,连接Zookeeper,在leaf_forever父节点下检查自己是否已经注册过(是否有该顺序子节点)。
- 如果有注册过直接取回自己的workerID(zk顺序节点生成的int类型ID号),启动服务。
- 如果没有注册过,就在该父节点下面创建一个持久顺序节点,创建成功后取回顺序号当做自己的workerID号,启动服务。
弱依赖ZooKeeper
除了每次会去ZK拿数据以外,也会在本机文件系统上缓存一个workerID文件。当ZooKeeper出现问题,恰好机器出现问题需要重启时,能保证服务能够正常启动。这样做到了对三方组件的弱依赖。一定程度上提高了SLA。
时钟问题
因为这种方案依赖时间,如果机器的时钟发生了回拨,那么就会有可能生成重复的ID号,需要解决时钟回退的问题。
服务启动时首先检查自己是否写过ZooKeeper leaf_forever节点:
- 若写过,则用自身系统时间与
leaf_forever/${self}
节点记录时间做比较,若小于leaf_forever/${self}
时间则认为机器时间发生了大步长回拨,服务启动失败并报警。 - 若未写过,证明是新服务节点,直接创建持久节点
leaf_forever/${self}
并写入自身系统时间,接下来综合对比其余Leaf节点的系统时间来判断自身系统时间是否准确,具体做法是取leaf_temporary下的所有临时节点(所有运行中的Leaf-snowflake节点)的服务IP:Port,然后通过RPC请求得到所有节点的系统时间,计算sum(time)/nodeSize。 - 若abs( 系统时间-sum(time)/nodeSize ) < 阈值,认为当前系统时间准确,正常启动服务,同时写临时节点
leaf_temporary/${self}
维持租约。 - 否则认为本机系统时间发生大步长偏移,启动失败并报警。
- 每隔一段时间(3s)上报自身系统时间写入
leaf_forever/${self}
。
由于强依赖时钟,对时间的要求比较敏感,在机器工作时NTP同步也会造成秒级别的回退,建议可以直接关闭NTP同步。要么在时钟回拨的时候直接不提供服务直接返回ERROR_CODE,等时钟追上即可。或者做一层重试,然后上报报警系统,更或者是发现有时钟回拨之后自动摘除本身节点并报警。
利用 redis 生成 id
性能比较好,灵活方便,不依赖于数据库。但是,引入了新的组件造成系统更 加复杂,可用性降低,编码更加复杂,增加了系统成本。